Solutions - Midterm Exam

(February 14th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

a) Complete the following table. The decimal numbers are unsigned: (5 pts.)

Decimal	BCD	Binary	Reflective Gray Code
42	01000010	101010	111111
54	01010100	110110	101101
169	000101101001	10101001	11111101

b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (12 pts.)

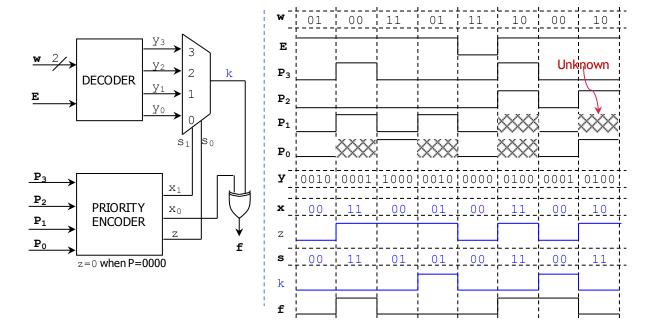
REPRESENTATION				
Decimal	Sign-and-magnitude	1's complement	2's complement	
-21	110101	101010	101011	
-32	1100000	1011111	100000	
45	0101101	0101101	0101101	
-64	11000000	10111111	1000000	
-24	1 11000	100111	101000	
-38	1 100110	1011001	1011010	

c) Convert the following decimal numbers to their 2's complement representations. (3 pts)

-19.375 \checkmark 16.125 $+19.375 = 010011.011 \Rightarrow -19.375 = 101100.101$ 16.125 = 010000.001

PROBLEM 2 (15 PTS)

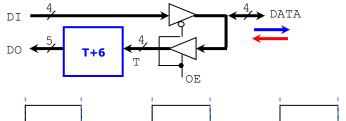
• Complete the timing diagram of the circuit shown below. $y = y_3y_2y_1y_0$, $x = x_1x_0$, $s = s_1s_0$

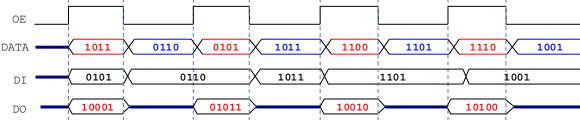


1

PROBLEM 3 (8 PTS)

Complete the timing diagram (signals DO and DATA) of the following circuit. The circuit in the blue box computes the summation T+6, with the result having 5 bits. T is an unsigned 4-bit number.



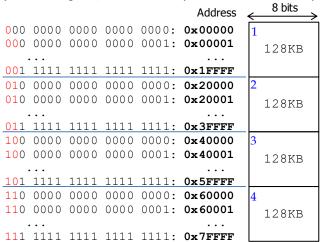


PROBLEM 4 (12 PTS)

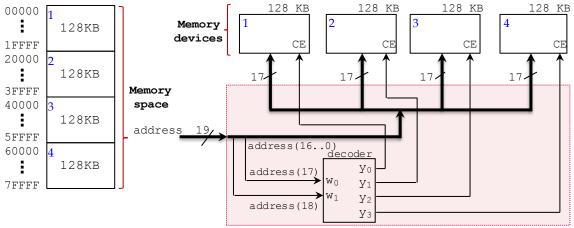
- A microprocessor has a memory space of 512 KB. Each memory address occupies one byte. $1KB = 2^{10}$ bytes, $1MB = 2^{20}$ bytes, $1GB = 2^{30}$ bytes. We want to connect four 128 KB memory chips to this microprocessor.
 - ✓ What is the address bus size (number of bits of the address) of the microprocessor? (1 pt).

Size of memory space: $512 \text{ KB} = 2^{19} \text{ bytes}$. Thus, we require 19 bits to address the memory space.

- ✓ For a memory chip of 128 KB, how many bits do we require to address 128 KB of memory? (1 pt). 128 KB memory device: $128 \text{ KB} = 2^{17}$ bytes. Thus, we require 17 bits to address the memory device.
- ✓ Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips in the figure. (4 pts).



✓ Sketch the circuit that: i) addresses the memory chips, and ii) enables only one memory chip (via CE: chip enable) when the address falls in the corresponding range. Example: if address=0x2FFFF, → only memory chip 2 is enabled (CE=1). If address=0x6ABCO, → only memory chip 4 is enabled.



2

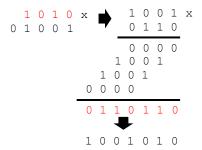
PROBLEM 5 (17 PTS)

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher byte. (6 pts) $\sqrt{49 + 18}$

b) Perform the following operations, where numbers are represented in 2's complement. Indicate every carry from c_0 to c_n . For each case, use the fewest number of bits to represent the summands and the result so that overflow is avoided. (8 pts) \checkmark -37 + 50

```
\begin{array}{c} c_6 = 1 \\ c_5 = 1 \\ c_4 = 0 \\ c_3 = 0 \\ c_2 = 1 \\ c_1 = 0 \\ c_0 = 0 \end{array}
n = 7 bits
                                                                    n = 7 bits
                 -37 = 1 0 1 1 0 1 1 +
                                                                     C_7 \oplus C_6 = 1 -40 = 1 0 1 1 0 0 0 +
 C_7 \oplus C_6 = 0
                                                                     Overflow! -26 = 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0
                  50 = 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0
No Overflow
                  13 = 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1
                                                                                          0 1 1 1 1 1 0
-37 + 50 = 13 \in [-2^6, 2^6-1] \rightarrow \text{no overflow}
                                                                 -40 - 26 = -66 \notin [-2^6, 2^6 - 1] \rightarrow \text{overflow!}
                                                                 To avoid overflow: n = 8 bits (sign-extension)
                                                                    -40 = 1 1 0 1 1 0 0 0 +
                                                                              -26 = 1 1 1 0 0 1 1 0
                                                                                       1 0 1 1 1 1 1 0
                                                                   -40 - 26 = -66 \in [-2^7, 2^7 - 1] \rightarrow \text{no overflow}
```

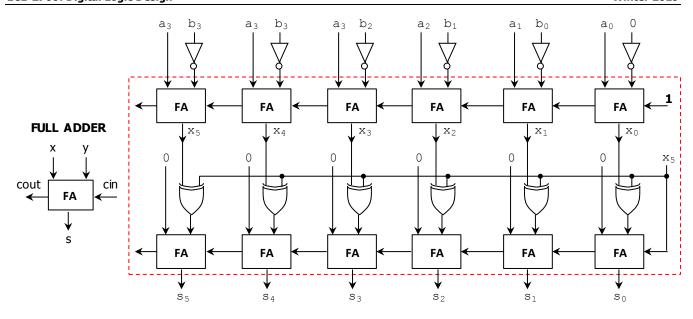
c) Perform binary multiplication of the following numbers that are represented in 2's complement arithmetic. (3 pts)



PROBLEM 6 (10 PTS)

Given two 4-bit signed numbers A, B, sketch the circuit that computes |A-2B|. For example: A=1010, $B=0110 \rightarrow |A-2B|=|-6-2\times 6|=18$. You can only use full adders and logic gates. Your circuit must avoid overflow: design your circuit so that the result and intermediate operations have the proper number of bits.

```
A = a_3 a_2 a_1 a_0, B = b_3 b_2 b_1 b_0 \text{: signed numbers}
A, B \in [-8,7] \to 2B \in [-16,14] \text{ requires 5 bits in 2C. } 2B = b_3 b_2 b_1 b_0 0
\checkmark \quad X = A - 2B \in [-22,23] \text{ requires 6 bits in 2C. Thus, the operation } A - 2B \text{ requires 6 bits (we sign-extend } A \text{ and } 2B).
A - 2B = a_3 a_3 a_3 a_2 a_1 a_0 - b_3 b_3 b_2 b_1 b_0 0
\checkmark \quad |X| = |A - 2B| \in [0,23] \text{ requires 6 bits in 2C. Thus, the second operation } 0 \pm X \text{ only requires 6 bits.}
\Box \quad \text{If } x_5 = 1 \to X < 0 \to \text{we do } 0 - X.
\Box \quad \text{If } x_5 = 0 \to X \ge 0 \to \text{we do } 0 + X.
```



PROBLEM 7 (18 PTS)

- Sketch the circuit that implements the following Boolean function: $f(a,b,c,d) = (\overline{a \oplus b})(\overline{c \oplus d})$
 - ✓ Using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (12 pts)

$$f(a,b,c,d) = (\overline{a \oplus b})(\overline{c \oplus d})$$

$$f = \overline{a}f(0,b,c,d) + af(1,b,c,d) = \overline{a}(\overline{b}(\overline{c \oplus d})) + a(b(\overline{c \oplus d})) = \overline{a}g(b,c,d) + ah(b,c,d)$$

$$g(b,c,d) = \overline{b}(\overline{c \oplus d}) + b(0)$$

$$h(b,c,d) = \overline{b}(0) + b(\overline{c \oplus d})$$

$$t(c,d) = (\overline{c \oplus d}) = \overline{c}(\overline{d}) + c(d)$$
Also: $\overline{d} = \overline{d}(1) + d0$

✓ Using two 3-to-1 LUTs and a 2-to-1 MUX. Specify the contents of each of the 3-to-1 LUTs. (6 pts)

